
N91- 4o50
GENETIC ALGORITHMS

Lui Wang

Software Technology Branch

Lyndon B. Johnson Space Center

National Aeronautics and Space Administration
Houston, TX 77058

wang@mpad.span.nasa.gov

Steven E. Bayer

Engineering Technology Group

The MITRE Corporation
1120 NASA Road One, Suite 600

Houston, TX 77058

bayer@ mpad.span.nasa.gov

ABSTRACT

Genetic algorithms are highly parallel, mathematical, adaptive search procedures (i.e., problem-solving methods)

based loosely on the processes of natural genetics and Darwinian survival of the fittest. This paper introduces

basic genetic algorithm concepts, discusses genetic algorithm applications, and presents results from a project to
develop a software tool that will enable the widespread use of genetic algorithm technology.

INTRODUCTION

Background

Genetic algorithms (GAs) were pioneered by John Holland in his research on adaptation in natural and artificial

systems (1). This research outlined a logical theory of adaptive systems. In essence, biological adaptive

systems strive to optimize single individuals or entire species for specific environments to increase the chance of

survival. Holland simulated the methods used when biological systems adapt to their environment in computer

software models-the genetic algorithms-to solve optimization and machine learning problems. The following

paragraphs briefly discuss two types of adaptation strategies which are observed in many biological systems and
inspired the basic framework of genetic algorithms.

Adaotation. One form of adaptation pertains to the way an individual changes within its environment to

promote survival. Examples include the development of antibodies specific to certain diseases, or the

enlargement of muscles needed for daily activities. The way we learn, and the neural changes that accompany
learning, is another example of how an individual adapts within its environment. The effects of this form of

adaptation are not imprinted on the genome (the genetic makeup of a species); that is, they are not passed on

from generation to generation. On the other hand, individual adaptation does promote the survival of the

individual within an environment-survival of the fittest-and enhances that individual's net reproductive

advantage through a natural selection where fitter members of a population are more likely to reproduce.

All species have used adaptive search for millions of years, through an evolutionary search process, to improve

the way a species lives and survives within its environment. Therefore, adaptation also refers to evolution and

modification of an entire species to fit its environment. This is the process of making a species

environmentally fit. An appropriate example can be seen in the way many plant species have evolved their
flower to resemble a female bee or wasp that attracts the male counterpart and promotes pollination. This

evolutionary or species adaptation is imprinted on the genome and is passed on to subsequent generations.

Thus natural, biological systems continuously use adaptive search to improve genomes-that is, to improve the

species-and to promote the survival of fitter individuals and genomes through natural selection.

Genetic Algorithms. Genetic algorithms are highly parallel, mathematical, adaptive search procedures (i.e.,
problem-solving methods) based loosely on the processes of natural genetics and Darwinian survival of the

fittest. These algorithms apply genetically-inspired operators to populations of potential solutions in an

iterative fashion, creating new populations while searching for an optimal (or near-optimal) solution to the

problem at hand. Population is a key word here: the fact that many points in the space are searched in parallel

sets genetic algorithms apart from other search operators. Another important characteristic of genetic algorithms

is the fact that they are very effective when searching (e.g., optimizing) function spaces that are not smooth or,

76



combine several measurements from different types of sensors and maintain a desired state of this non-linear
system. The concept can easily be expanded to detect potential component failures and generate immediate
advisory messages for corrective actions. Suitability of currently available fuzzy hardware for real-time
monitoring and diagnosis is also being investigated.

SUMMARY

Applications of fuzzy logic in autonomous orbital operations are described in this paper with past
accomplishments at JSC. Current ongoing as well as future activities planned are also described. The main
objective of all these activities is to increase autonomy in orbital operations and thus achieve a higher
level of operational efficiency desired for future space operations. The approach is to develop modular
control that can be upscaled for greater autofiomy in an integrated environment. The initial step is to
develop a software controller and then to integrate it with hardware at the appropriate level. As the activities
progress, detail testing is performed to check out implementation and integration of components. Our
preliminary results promise a very successful utilization of fuzzy logic in autonomous orbital operations.

REFERENCES

1. Zadeh, L. : "Fuzzy Sets", Information and Control, vol. 8, pp. 338-353, 1965.
2. Klir G. J. ; and Folger T. A. : Fuzzy sets, Uncertainty, and Information, Prentice Hall, New Jersey,
1988. _ ....

3. Lea, R. N. ; and Giarratano, J. : An Expert System Program Using Fuzzy Logic For Shuttle Rendezvous
Sensor Control, proceedings of ROBEXS'86, pp. 32_i_)g6..
4. Lea, R. N. ; and Jani, Y. : Spacecraft Attitude Control System Based on Fuzzy Logic Principles,
proceedings of ROBEXS'89, 1989.
5. lea, R. N. ; Togai, M. ; Teichrow, J. ; and Jani, Y. : Fuzzy Logic Approach to Combined Translational
and Rotational Control of a Spacecraft in Proximity of the Space Station, Proceedings of the IFSA'89, pp.
23-29 1989.
6. Rogers, M. ; and Hoshiai, Y. : The Future Looks 'Fuzzy', NEWSWEEK, May 28, 1990.
7. Johnson, R. C. : Clear Leader Emerges : Japan at fuzzy fore, EETimes, Sept. 11, 1989.
8. Armstrong, L. ; and Gross, N. : Why _uzzy Logic' beats black-or-white thinking, Science &
Technology section, BUSINESS WEEK, May 21, 1990.
9. Yasunobu, S. ; and Miyamoto, S. : "Automatic Train Operation System by Predictive Control",
Industrial Applications of Fuzzy Control, Sugeno, M. ('Ed.), 1-18, North-Holland: Amsterdam, 1985.
10. Perkins, C, ; Teichrow, J. ; and Horstkotte, E. : Fuzzy-C development system : A complete overview,
Togai InfraLogic Inc., SOAR-89 conference held at Johnson Space Center, Houston, July 25-27, 1989.
11. Teichrow, J. ; and Horstkotte, E. : Fuzzy-C compiler User's manual, v2.0b, Togai InfraLogic Inc.,
Irvine, California, April 1989.
12. Lee, C. C. ; and Berenji, H. R. : An Intelligent Controller Based On Approximate Reasoning And
Reinforcement Learning, Proc. of IEEE Int. Symposium on Intelligent Control, Albeny, NY 1989.
13. Lea, R. N. • Automated Space Vehicle Control for Rendezvous Proximity Operations, Telematics and
Informatics, vol. 5, no. 3, pp 179-185, I988.
14. Lea, R. N. : Applications of fuzzy sets to Rule-based Expert System Development, Telematics and
Informatics, vol. 6, nos. 3/4, pp 403-406, 1989.
15. Edwards, H. C. ; and Bailey, R. : The Orbital Operations Simulator User's Guide, LinCom corporation,
ref. LM85-1001-01, June 87.
16. Video Conference Demonstration from Johnson Space Center, International Workshop On Fuzzy

Systems Applications (IFSA-88), Iizuka, Fukuoka, Japan, August 20-24 1988.
17. Lea, R. N., Giarratano, L,_Fritz, R. H., and Jani, Y. K. : Fuzzy Logic Control for Camera Tracking
System, Proceedings of the 8th International Congress of Cybernetics and Systems, New York, lune 1990.
18. Pal, S. K. : 'Fuzziness, Image Information and Scene Analysis' in An Introduction to Fuzzy Logic
Applications in Intelligent Systems edited by R. R. Yager & L. A. Zadeh, Khwer Academic Publishers (to
appear).

75



continuous-functionswhichareverydifficult(orimpossible)tosearch using calculus based methods. Genetic
algorithms are also blind: that is, they know nothing of the problem being solved other than payoff or penalty
(i.e., objective function) information.

The basic iterative model of the genetic algorithms is shown in figure 1. A new population is created from an
existing population by means of evaluation, selection, and reproduction. This process repeats itself until the
population converges on an optimal solution or some other stopping condition is reached.

The initial population consists a set of
individuals (i.e., potential solutions)
generated randomly or heuristically. In the
classical genetic algorithm, each member is
represented by a fixed-length binary string of
bits (a chromosome) that encodes parameters
of the problem. This encoded string can be
decoded to give the integer values for these

parameters.

Once the initial population has been created,
the evaluation phase begins. The genetic
algorithms require that members of the
population can be differentiated according to
goodness orfitness. The members that are
more fit are given a higher probability of

Current _ Hew
Population Population

Selection

Figure 1. The Iterative Genetic Algorithm Model.

participating during the selection and reproduction phases. Fitness is measured by decoding a chromosome and
using the decoded parameters as input to the objective function. The value returned by the objective function (or
some transformation of i0 is used as the fitness value.

During the selection phase, the population members are given a target sampling rate which is based on fitness
and determines how many times a member will mate during this generation-that is, how many offspring from
this individual will be created in the next population. The target sampling rate (usually not a whole number)
must be transformed into an integer number of matings for each individual. There are many ways of
determining the target sampling rate and the actual number of matings. Suffice it to say that individuals that are
more fit are given a reproductive advantage over less fit members.

During the reproduction phase, two members of the mating pool (i.e., members of the population with non-zero
mating counts) are chosen firomrandom and genetic operators are applied to their genetic material to produce two
new members for the next population. This process is repeated until the next population is filled. The
recombination phase usually involves two operators: crossover and mutation. A simple crossover operation is
illustrated in figure 2. During crossover, the two parents exchange substring information (genetic material) at a
random position in the chromosomes to produce two new strings.

Crossover occurs according to a
crossover probability, usually between
0.5 and 1.0. The crossover operation
searches for better building blocks
within the genetic material which
combine to create optimal or near-
optimal problem parameters and,
therefore, problem solutions, when the
string is decoded.

rossover Point

Parent Strings Child Strings

Figure 2. The Crossover Operation.

The mutation operation, shown in figure 3, is a secondary genetic algorithm. It is used to maintain deversity in
the population-that is, to keep the population from prematurely converging on one solution-and

77



to create genetic material that may not be present in

the current population. The mechanics of the

mutation operation are simple: for each position in

a string created during crossover, change the value

at that position according to a mutation

probability. The mutation probability is usually
very low-less than 0.05.

I Mutations

Figure 3. The Mutation Operation.

Genetic Algorithm Applications

Since genetic algorithms provide a set of efficient, domain-independent search methods, they have been used for

a wide range of app lCIEfftion_..Table 1 Iist_ some oftheGA appiications ranging from science and engineering to

business and social sciences applications. The following sections briefly describe several of these applications.

_. Goldberg (3) applied genetic algorithms and classifier systems to optimization and machine

learning problems in natural gas pipeline control. He focussed on a 10-compressor, 10-pipe, steady-state, serial

pipeline problem. The object was to minimize the power consumed subject to maximum and minimum

pressure and pressure ratio constraints. Goldberg andSamtani (4) used a simple genetic algorithm to optimize a

10-member plane truss. The objective was to minimize the weight of the structure subject to maximum and
minimum stress constraints on each member. In both cases, optimal or near-optimal results were obtained.

Medical Image Processing. Fitzpatrick, et al. (5), used genetic z,gorithms to perform image registration for an
arterial examination system known as digital subtraction angiography. Using this system, a physician
examines arteries using two x-rays: one taken of the artery unaltered and one taken after injection of a dye into

the artery. The two x-ray images are subtracted one pixel at a time; the result is a picture of the interior wall of

the artery. Movement of the artery between the time each x-ray is taken results in a distorted image.

Fitzpatrick, et al., used genetic algorithms to f'md a set of equations that transform or register the two images.

Robot Path Planning. A Mobile Transporter system is being designed for on-orbit use with Space Station

Freedom which will be capable of traversing the station's truss structure. The Mobile Transporter's fun c.tion is
to facilitate space station maintenance tasks _ind ir-a-n_portation of material arou-nd the station. The Software

Technology Branch has investigated the use of genetic algorithms for Mobile Transporter path planning (6).
The objectives of these activities are to produce an optimum trajectory for the Mobile Transporter that avoids

collisions with objects attached to the truss and to minimize the length of the path between the Mobile

Transporter and the target position.

Machine Learning. Genetic algorithms have been used in an area of machine learning called classifier systems.

CFassifier systems learn ff-tten production rules that guide the performance of a production system. Holland has

used classifier systems in studies of economic models, specifically mathematical stock market models. The

genetic algorithm creates new rules for trading and selling stocks.

TABLE 1. Genetic Algorithm Applications in Search and Optimization [taken from (2)]

Year Investigators Des_riplj'0n

BIOLOGY

1967 Rosenberg

1970 Weinberg

1984 Perry
1986 Grosso

1987 Sannier and Goodman

Simulation of the evolution of single-celled organism populations

Outline of cell population simulation including metalevel GA

Investigation of niche theory and speciation with GAs

Simulation of diploid GA with explicit subpopulations and migration

GA adapts structures responding to spatial and temporal food availability

78



tocreategeneticmaterialthatmaynotbepresent in

the current population. The mechanics of the

mutation operation are simple: for each position in

a string created during crossover, change the value

at that position according to a mutation

probability. The mutation probability is usually

very low-less than 0.05.

I Mutations I

Figure 3. The Mutation Operation.

Genetic Algorithm Applications

Since genetic algorithms provide a set of efficient, domain-independent search methods, they have been used for

a wide range of applications. Table 1 lists some of the GA applications ranging from science and engineering to
business and social sciences applications. The following sections briefly describe several of these applications.

Engineering. Goldberg (3) applied genetic algorithms and classifier systems to optimization and machine

learning problems in natural gas pipeline control. He focussed on a 10-compressor, 10-pipe, steady-state, serial

pipeline problem. The object was to minimize the power consumed subject to maximum and minimum
pressure and pressure ratio constraints. Goldberg and Samtani (4) used a simple genetic algorithm to optimize a

10-member plane truss. The objective was to minimize the weight of the structure subject to maximum and
minimum stress consla'aints on each member. In both cases, optimal or near-optimal results were obtained.

Medical Image Processing. Fitzpatrick, et al. (5), used genetic a, gorithms to perform image registration for an

arterial examination system known as digital subtraction angiography. Using this system, a physician

examines arteries using two x-rays: one taken of the artery unaltered and one taken after injection of a dye into

the artery. The two x-ray images are subtracted one pixel at a time; the result is a picture of the interior wall of

the artery. Movement of the artery between the time each x-ray is taken results in a distorted image.
Fitzpatrick, et al., used genetic algorithms to find a set of equations that transform or register the two images.

Robot Path Planning. A Mobile Transporter system is being designed for on-orbit use with Space Station

Freedom which will be capable of traversing the station's truss structure. The Mobile Transporter's function is

to facilitate space station maintenance tasks and transportation of material around the station. The Software

Technology Branch has investigated the use of genetic algorithms for Mobile Transporter path planning (6).
The objectives of these activities are to produce an optimum trajectory for the Mobile Transporter that avoids

collisions with objects attached to the truss and to minimize the length of the path between the Mobile

Transporter and the target position.

Machine Learning. Genetic algorithms have been used in an area of machine learning called classifier systems.

Classifier systems learn if-then production rules that guide the performance of a production system. Holland has

used classifier systems in studies of economic models, specifically mathematical stock market models. The

genetic algorithm creates new rules for trading and selling stocks.

TABLE 1. Genetic Algorithm Applications in Search and Optimization [taken from (2)]

Year Investigators Descrip_i0n

BIOLOGY

1967 Rosenberg

1970 Weinberg

1984 Perry
1986 Grosso

1987 Sannier and Goodman

Simulation of the evolution of single-celled organism populations

Outline of cell population simulation including metalevel GA

Investigation of niche theory and speciation with GAs

Simulation of diploid GA with explicit subpopulations and migration

GA adapts structures responding to spatial and temporal food availability

78



continuous--functions which are very difficult (or impossible) to search using calculus based methods. Genetic

algorithms are also blind: that is, they know nothing of the problem being solved other than payoff or penalty
(i.e., objective function) information.

The basic iterative model of the genetic algorithms is shown in figure 1. A new population is created from an
existing population by means of evaluation, selection, and reproduction. This process repeats itself until the
population converges on an optimal solution or some other stopping condition is reached.

The initial population consists a set of
individuals (i.e., potential solutions)
generated randomly or heuristically. In the
classical genetic algorithm, each member is
represented by a fixed-length binary string of
bits (a chromosome) that encodes parameters
of the problem. This encoded string can be
decoded to give the integer values for these

parameters.

Once the initial population has been created,
the evaluation phase begins. The genetic
algorithms require that members of the
population can be differentiated according to

Current _ New
Population Popula_lon

o_,._ Se I ec_. i on

goodness or fitness. The members that are Figure 1. The Iterative Genetic Algorithm Model.
morefit are given a higher probability of _--_- : :: .... _: _ _ _ _ _ _

participating during the selection and reproduction phases. Fitness is measured by decoding a chromosome and
using the decoded parameters as input to the objective function. The value returned by the objective function (or
some transformation of it) is used as the fitness value.

During the selection phase, the population members are given a target sampling rate which is based on fimess
and determines how many times a member will mate during this generation-that is, how many offspring from
this individual will be created in the next population. The target sampling rate (usually not a whole number)
must be transformed into an integer number of matings for each individual. There are many ways of
determining the target sampling rate and the actual number of matings. Suffice it to say that individuals that are
more fit are given a reproductive advantage over less fit members.

During the reproduction phase, two members of the mating pool (i.e., members of the population with non-zero
mating counts) are chosen from random and genetic operators are applied to their genetic material to produce two
new members for the next population. This process is repeated until the next population is filled. The
recombination phase usually involves two operators: crossover and mutation. A simple crossover operation is
illustrated in figure 2. During crossover, the two parents exchange substring information (genetic material) at a
random position in the chromosomes to produce two new strings.

Crossover occurs according to a
crossover probability, usually between
0.5 and 1.0. The crossover operation
searches for better building blocks
within the genetic material which
combine to create optimal or near-

optimal problem parameters and,
therefore, problem solutions, when the

string is decoded.

_ovof

Point

Parent Strings Child Strings

Figure 2. The Crossover Operation.

The mutation operation, shown in figure 3, is a secondary genetic algorithm. It is used to maintain deversity in
the population-that is, to keep the population from prematurely converging on one solution-and

77



Year

1967
1979
1982
1984
1985
1987

1981
1982
1983
1985
1985
1985
1985
1985
1986
1986
1986
1986
1987
1987

1970
1984
1985
1985
1987

1985

TABLE1. (Continued.)

Investigators Description

COMPUTERSCIENCE
aagley
RaghavanandBirchard

_y
Gordon

Rendell

RaghavanandAgarwal

Parameter search in hexapawn-like game evaluation function via GA
GA-based clustering algorithm
Probabilities automation identification attempt via GA
Adaptive document description using GA
GA search for game evaluation function
Adaptive document clustering using GAs

ENGINEERING & OPERATIONS RESEARCH

Goldberg
Etter, Hicks, and Cho
Goldberg
Davis
Davis
Davis and Smith
Fourman

Goldberg and Kuo
Glover

Goldberg and Samtani
Goldberg and Smith
Minga
Davis and Coombs
Davis and Rittter

Mass-spring-dashpot system identification with simple GA
Recursive adaptive filter design using a simple GA
Steady-state and transient optimization of gas pipeline using GA
Bin-packing and graph-coloring problems via GA
Outline of job shop scheduling procedure via GA
VLSI circuit layout via GA
VLSI layout compaction with GA
On-off, steady-state optimization of oil pump-pipeline system with GA
Keyboard configuration design using a GA
Structural optimization (plane truss) via
Blind knapsack problem with simple GA
Aircraft landing strut weight optimization with GA
Communications network link size optimization using GA
Classroom scheduling via simulated annealing with metalevel GA

IMAGE PROCESSING & PATTERN RECOGNITION

Cavicchio Selection of detectors for binary pattern recognition
Fitzpatrick, et al. Image registration via GA to minimize image differences
Englander Selection of detectors for known image classification
Gillies Search for image feature detectors via GA
Stadnyk Explicit pattern class recognition using partial matching

PHYSICAL SCIENCES

Shaefer Nonlinear equation solving with GA for fitting potential surfaces

SOCIAL SCIENCES

1979 Reynolds
1981 Smith and De Jong
1985 Axelrod
1985 Axelrod

GA-like adaptation in model of prehistoric hunter-gatherer behavior
Calibration of population migration model using GA search
Simulation of the evolution of behavioral norms with GA

Iterated prisoners dilemma problem solution using GA

THE SPLICER PROJECT

This section introduces the Splicer Project. It presents background material and discusses the objectives of the
project, the approach taken, results to date, current status and possibilities for future work.

Background

The Splicer Project is a project within the Software Technology Branch at NASA's Johnson Space Center. The
purpose of the project is to develop a tool that will enable the widespread use of genetic algorithm technology.

79



The charter of the Software Technology Branch is to develop and/or acquire generic software tools for emerging

technologies. Genetic algorithms are just one of the many technologies being investigated within the Software

Technology Branch: other areas and tools are expert systems (CLIPS), neural networks (NETS), fuzzy logic,
scheduling (COMPASS), software reuse, and intelligent computer-aided training.

The MITRE Corporation supports the Software Technology Branch on multiple projects and is responsible for

evaluating the viability and robustness of genetic algorithms and for supporting the Software Technology
Branch with respect to the development and acquisition of software tools related to this technology.

Objectives

The Software Technology Branch is interested in applying genetic algorithms within various domains: e.g.,
robot path planning, job shop scheduling. The original goal of the Splicer Project was to create a flexible,
generic tool. As such, the tool would: ...... _:.:

• Implement the basic genetic algorithms defined in the literature

• Define the interfaces for and allow users to develop interchangeable fitness modules
• Provide a graphic, event-driven user interface

Subsequent goals include the following:

• Distribution of the tool in the public domain

• Support for multiple computing platforms

• Extension of the tool for additional genetic algorithm functionality

• Use of the tool for genetic algorithm research

° Augmentation of the tool and special user interfaces for specific application domains

Approach

_. The design chosen for the Splicer tool is shown in figure 4. This design consists of four components:

a genetic algorithm kernel and three types of interchangeable libraries or modules: representation libraries,
fitness modules, and user interface ilbraries.

A genetic algorithm kernel was developed that is

independent of representation (i.e., problem

encoding), fitness function, or user interface type.

The GA kernel comprises all functions necessary

for the manipulation of populations. These

functions include the creation of populations and

population members, the iterative population

model, fitness scaling, parent selection and
sampling, and the generation of population

statistics. In addition, miscellaneous functions are

included in the kernel (e.g., random number

generators).

I i:_:!

Qen°.° I I Ii
Algorithm _, ,_ Representation iii[_

Kernel _ Library

|lil 'n'"°"I -I lii|

Different types of problem-encoding schemes and Figure 4. Splicer Project Design

functions are defined and stored in interchangeable representation libraries. This allows the GA kernel to be used

for any representation scheme. At present, the Splicer tool provides representation l_raries for binary strings

and for permutations. These libraries contain functions for the definition, creation, and decoding of genetic

swings, as well as multiple crossover and mutation operators. Furthermore, the Splicer tool defines the

appropriate interfaces to allow users to create new representation libraries (e.g., for use with vectors or

grammars).

Fitness functions are defined and stored in interchangeable fitness modules. Fitness modules are the only piece

of the Splicer system a user will normally be required to create or alter to solve a particular problem. Within a

80



The charter of the Software Technology Branch is to develop and/or acquire generic software tools for emerging

technologies. Genetic algorithms are just one of the many technologies being investigated within the Software

Technology Branch: other areas and tools are expert systems (CLIPS), neural networks (NETS), fuzzy logic,

scheduling (COMPASS), software reuse, and intelligent computer-aided training.

The MITRE Corporation supports the Software Technology Branch on multiple projects and is responsible for

evaluating the viability and robustness of genetic algorithms and for supporting the Software Technology
Branch with respect to the development and acquisition of software tools related to this technology.

Objectives

The Software Technology Branch is interested in applying genetic algorithms within various domains: e.g.,

robot path planning, job shop scheduling. The original goal of the Splicer Project was to create a flexible,

generic tool. As such, the tool would:

• Implement the basic genetic algorithms defined in the literature
• Define the interfaces for and allow users to develop interchangeable fitness modules

• Provide a graphic, event-driven user interface

Subsequent goals include the following:
• Distribution of the tool in the public domain

• Support for multiple computing platforms

• Extension of the tool for additional genetic algorithm functionality

• Use of the tool for genetic algorithm research

• Augmentation of the tool and special user interfaces for specific application domains

Approach

D._iga. The design chosen for the Splicer tool is shown in figure 4. This design consists of four components:

a genetic algorithm kernel and three types of interchangeable libraries or modules: representation libraries,

fitness modules, and user interface libraries.

A genetic algorithm kernel was developed that is

independent of representation (i.e., problem

encoding), fitness function, or user interface type.

The GA kernel comprises all functions necessary

for the manipulation of populations. These

functions include the creation of populations and

population members, the iterative population
model, fitness scaling, parent selection and

sampling, and the generation of population
statistics. In addition, miscellaneous functions are

included in the kernel (e.g., random number

generators).

Different types of problem-encoding schemes and

I Genetic

Algorithm
Kernel

...... M

Library

_l Fitness

Figure 4. Splicer Project Design

functions are defined and stored in interchangeable representation libraries. This allows the GA kernel to be used

for any representation scheme. At present, the Splicer tool provides representation libraries for binary strings

and for permutations. These libraries contain functions for the definition, creation, and decoding of genetic

strings, as well as multiple crossover and mutation operators. Furthermore, the Splicer tool defines the

appropriate interfaces to allow users to create new representation libraries (e.g., for use with vectors or

grammars).

Fitness functions are defined and stored in interchangeable fitness modules. Fitness modules are the only piece

of the Splicer system a user will normally be required to create or alter to solve a particular problem. Within a

80



TABLE 1. (Continued.)

year _ Investigators I_sc_p_on

COMPUTER SCIENCE

1967 Bagley
1979 Raghavan and Birehard
1982 Gerardy
1984 Gordon
1985 Rendell

1987 Raghavan and Agarwa/

Parameter search in hexapawn-like game evaluation function via GA
GA-based clustering algorithm
Probabilities automation identification attempt via GA
Adaptive document description using GA
GA search for game evaluation function
Adaptive document clustering using GAs

ENGINEERING & OPERATIONS RESEARCH

1981 Goldberg
1982 Etter, Hicks, and Cho

1983 Goldberg
1985 Davis
1985 Davis
1985 Davis and Smith
1985 Fourman

1985 Goldberg and Kuo
1986 Glover

1986 Goldberg and Samtani
1986 Goldberg and Smith
1986 Minga
1987 Davis and Coombs
1987 Davis and Rittter

Mass-spring-dashpot system identification with simple GA
Recursive adaptive filter design using a simple GA
Steady-state and transient optimization of gas pipeline using GA
Bin-packing and graph'coloring problems via GA
Outline of job shop scheduling procedure via GA
VLSI circuit layout via GA :_ :
VLSI layout compaction with GA _iii:: .... _

On-off, steady-state optimization of oil pump-pipeline system with GA
Keyboard configuration design using a GA
Structural optimization (plane truss) via
Blind knapsack problem with simple GA
Aircraft landing strut weight optimization with GA
Communications network link size optimization using GA
Classroom scheduling via simulated annealing with metalevel GA

1970
1984
1985
1985
1987

IMAGE PROCESSING & PATTERN RECOGNITION

Cavicchio Selection of detectors for binary pattern recognition
Fitzpatrick, et al. Image registration via GA to minimize image differences
Englander Selection of detectors for known image classification
Gillies Search for image feature detectors via GA •
Stadnyk Explicit pattern class recognition using partial matching

PHYSICAL SCIENCES
1985 Shaefer Nonlinear equation solving with GA for fitting potential surfaces

SOCIAL SCIENCES

1979 Reynolds
1981 Smith and DeJong
1985 Axelrod
1985 Axekod

GA-like adaptation in model of prehistoric hunter-gatherer behavior
Calibration of population migration model using GA search
Simulation of the evolution of behavioral norms with GA
iterated prisoners dilemma problem solution using GA

THE SPLICER PROJECT

This section inla'oduces the Splicer Project. It presents background material and discusses the objectives of the

project, the approach taken, results to date, current status and possibilities for future work.

Background

The Splicer Project is a project within the Software Technology Branch at NASA's Johnson Space Center. The

purpose of the project is to develop a tool that will enable the widespread use of genetic algorithm technology.

79



fitness module, a user can create a fitness function, set the initial values for various Splicer control parameters

(e.g., population size), create a function which graphically draws the best solutions as they are found, and

provide descriptive information about the problem being solved. The tool comes with several example fitness
modules.

The Splicer tool provides three user interface libraries: a Macintosh user interface, an X Window System user
interface, and a simple, menu-driven, character-based user interface. The first two user interfaces are event-driven

and provide graphic output using windows.

Implementation. The C programming language was chosen for portability and modularization. The original

prototype was developed on an Apple Macintosh TM using Symantec's Think C TM. This included the

development of the Macintosh user interface. The GA kernel, representation libraries, and fitness functions were

then ported to a Sun 3/80 TM and SPARC TM. An X Windows System user interface was then developed using X

and the Hewlett-Packard Widget Set,

Results

This section will present the results to date of the Splicer Project. This will be done using brief descriptions

and pictures of components from the Macintosh interface (components of the X Window System interface are

very similar).

Control Parameters. The Control Parameters dialog box, shown in figure 5, allows the user to set the

values of multiple parameters that control the operation of the Splicer tool (e.g., population size, crossover

operator, mutation probability). This is accomplished in two ways: numeric parameters have buttons
associated with them that pop up dialog boxes to allow the user to enter a new value; genetic operators (e.g.,

the fitness scaling operator) have pop up menus associated with them that allow the user to select from a list of

operators.

The Parameter Characteristics button on the Control Parameters dialog box is used to pop up another

dialog box that allows the characteristics of the individual problem definition parameters to be changed (for

permutations there are no characteristics to change, therefore this button is disabled). The Parameter
Characteristics dialog box for binary strings is shown in figure 6. This dialog box allows the user to

specify the number of problem parameters and their size in number of bits. It also allows the parameter values
to be normalized during decoding to create floating point numbers.

Comtrul Parameters

Number of Parameters: _ I Paremeler Chora¢lerlgtlce l

Population SIZe:

Scaling Operator: _ It

Sharing Operator:.

Sa|e¢llen Operator:. 1 Proportional ]

Sampling Operator:. [ Ronkln 9 Method

crossover Operalor: ISlnole Point I

MiJ|a|14n* operator:. [ Paint I

Crolls o4*er Probe blll I y:

Mutellon Probability:

Random Number Seed:

Parameter Characteristics

Number of Parameters: [ 5

[] Normalize Parameter Values

[] Parameters Are All The Same Size

Parameter Sizes: I l
I: 8
2:8
3:8

(oK)

Figure 5. Conlrol Parameters Dialog Box.

Figure 6. The Parameter Characteristics Dialog

Box for Binary Strings.

81



EL0y,a_0_&Xfi. The operation of the Splicer program is comzolled using options on the Control menu,
shown in figure 7, as well as other menus (some of these are shown below). The Control Parameters
dialog box is displayed using the Set Control Parameters... option. To create a random population, the
Create Population option is selected. The Run option starts the execution of the genetic algorithms on the
existing population. To begin again with a clean slate, the Reinitialize... option is used.

Omrators. The Splicer program provides multiple genetic operators for fitness scaling, (in the future: fitness
sharing), parent selection, parent sampling, crossover, and mutation. These operators can be changed at any
time, even while the genetic algorithms are executing, and are selected using either the Operators menu
(shown in figure 8) or the menu buttons on the Control Parameters dialog box.

File Edit Operators Windows

t_ete-R_...
opuletlon

ze,,o

File Edit Control • Windows i

ntn_l
Fitness Sharing F I I

Solectlon F I I

Sampling b I I
Crossover F I I

Mutation b

Figure 7. The Control Menu. Figure 8. The Operators Menu.

Fitness Scaling. Splicer provides a linear fitness scaling option, as shown in figure 9. Fitness scaling
is useful near the end of a genetic algorithm run when all members of the population have high fitness. Scaling
spreads the fitness values and gives fitter members a higher reproductive advantage. Scaling can be ttmaed off.

_,$g._. While there is a place holder on the operators menu for fitness sharing, this option
haS not been implemented yet. _

Parent Selection. Parent selection can be performed using either proportional selection (i.e., using
relative fitness values) or using linear rank selection (where population members are simply ranked according to
fitness), as shown in figure 10.

i File Edit

Control

Figure 9. The Fitness Scaling Menu.

Parent Sampling. Parents can be sampled
using one of the methods shown in figure 11.

Crossover. The availability of crossover
operators depends upon the representation library
being used. The crossover operators provided by
the binary string library are shown in figure 12.
The crossover operators provided by the
permutation library are shown in figure 13.

.Mutation. Similarly, the availability of
mutation operators depends upon the representation
library being used. The mutation operators
provided by the binary string library are shown in

figure 14.

I Ib File Edit Control

i_liWiGdi/dIAlWln dow s
Fltna$l Scaling )' T
Fitness Sharing IP_[

___'-._Proport lonal I
Sompllh 0 _'_

Crossounr F I

Figure 10. The Selection Menu.

lib File Edit Control Windows

Determlstlc

I!i(pe( ted Lli_lue

Ranking Method
_Roulette Wheel

,/Stochastic w/Replacement

S|(l( I|flslJ( U,I,"(I Re|I]_( &l_ll_ltt

Stochastic Remainder w/Replacement

Stochastic Remainder w/o Replacement

Stochastic Tournament

Stochastic Unluersal

Tournament

Figure 11. The Sampling Menu.

The mutation operators provided by the permutation library are shown in figure 15.

82



_/_7_._. The operation of the Splicer program is conn'olled using options on the Control menu,
shown in figure 7, as well as other menus (some of these are shown below). The Control Parameters
dialog box is displayed using the Set Control Parameters... option. To create a random population, the
Create Population option is selected. The Run option starts the execution of the genetic algorithms on the
existing population. To begin again with a clean slate, the Reinitlalize... option is used.

Operators. The Splicer program provides multiple genetic operators for fitness scaling, (in the future: fimess
sharing), parent selection, parent sampling, crossover, and mutation. These operators can be changed at any
time, even while the genetic algorithms are executing, and are selected using either the Operators menu
(shown in figure 8) or the menu buttons on the Control Parameters dialog box.

Ilib File Edit i Operators Windows
v_et Control Parameters...

Create Population

Run

Relnitlalize...

• =

4 File Edlt' Control IIIIZUlIL[I]|I Windows __ I

Fitness Scaling I, I IFitness Sharing 1'FSelection F

Sampling F
Crossover F

,,Mutatlon k

Figure 7. The Control Menu. Figure 8. The Operators Menu.

Fitness Scaling. Splicer provides a linear fitness scaling option, as shown in figure 9. Fitness scaling
is useful near the end of a genetic algorithm run when all members of the population have high fitness. Scaling
spreads the fitness values and gives fitter members a higher reproductive advantage. Scaling can be turned off.

Fitness Sharing. While there is a place holder on the operators menu for fitness sharing, this option
has not been implemented yet.

Parent Selection. Parent selection can be performed using either proportional selection (i.e., using
relative fitness values) or using linear rank selection (where population members are simply ranked according to
fitness), as shown in figure 10.

16 File Edit Control

Figure 9. The Fitness Scaling Menu.

Parent Sampling. Parents can be sampled
using one of the methods shown in figure 11.

Crossover. The availability of crossover
operators depends upon the representation library
being used. The crossover operators provided by
the binary string library are shown in figure 12.
The crossover operators provided by the
permutation library are shown in figure 13.

Mutation. Similarly, the availability of

mutation operators depends upon the representation
library being used. The mutation operators
provided by the binary string library are shown in

figure 14.

It li Flln 'Edit Control . Windows

Fitness Scaling k l
Fltness Sho_na k_-.---_

• + " ,¢Propnrllollnl [

Sampling F_
Crolsouor II, I

Figure 10. The Selection Menu.

File Edlt Control li_]]-_]_ws

Determlstlc

Eltpo< ted IInlue

Ranking Method
,,."Roulette Wheel

_Stochostlc w/Replacement

S|O( flus||( W/O R(_illa( ement

Stochastic Remainder wl Replacement
Stochastic Remainder w/o Replacement
Stochastic Tournament

Stochastic Unlversal
Tournament

Figure 11. The Sampling Menu.

The mutation operators provided by the permutation library are shown in figure 15.

82



fitness module, a user can create a fitness function, set the initial values for various Splicer control parameters

(e.g., population size), create a function which graphically draws the best solutions as they are found, and

provide descriptive information about the problem being solved. The tool comes with several example fitness
modules.

The Splicer tool provides three user interface libraries: a Macintosh user interface, an X Window System user

interface, and a simple, menu-driven, character-based user interface. The first two user interfaces are event-driven
and provide graphic output using windows.

Implementation. The C programming language was chosen for portability and modularization. The original
prototype was developed on an Apple Macintosh ru using Symantec's Think C ru. This included the

development of the Macintosh user interface. The GA kernel, representation libraries, and fitness functions were

then ported to a Sun 3/80 ru and SPARC ru. An X Windows System user interface was then developed using X
and the Hewlett-Packard Widget Set.

Results

This section will present the results to date of the Splicer Project. This will be done using brief descriptions

and pictures of components from the Macintosh interface (components of the X Window System interface are
very similar).

Control Param¢lers. The Control Parameters dialog box, shown in figure 5, allows the user to set the

values of multiple parameters that control the operation of the Splicer tool (e.g., population size, crossover
operator, mutation probability). This is accomplished in two ways: numeric parameters have buttons

associated with them that pop up dialog boxes to allow the user to enter a new value; genetic operators (e.g.,

the fitness scaling operator) have pop up menus associated with them that allow the user to select from a list of

operators.

The Parameter Characteristics button on the Control Parameters dialog box is used to pop up another

dialog box that allows the characteristics of the individual problem definition parameters to be changed (for
permutations there are no characteristics to change, therefore this button is disabled). The Parameter

Characteristics dialog box for binary strings is shown in figure 6. This dialog box allows the user to

specify the number of problem parameters and their size in number of bits. It also allows the parameter values

to be normalized during decoding to create floating point numbers.

R Control Parameters

Number of Puramolnr$: _ I Puremnlor Charncl_rl0tlcs I

Population size:

Scaling Oporolor:. _ It

Shoring Oparalo_

SUlu¢ll_m operator: IPrnportlonnl |

Sampllng Opormton _Rankln|] Method

Crossmper Operitor:. I Single Po!nt ]

Mutallen Operator:. [ Point |

Crossover Probebnlty:

Mutalllon Probabllltu: tf--6-_JlJ_3--I

Random Number Sand:

Parameter Characteristics

Number of Parameters: ( 5 ]

[] Normalize Parameter Values

[] Parameters Are All The Same Size

Parameter Sizes: __

I oK }

Figure 5. Control Parameters Dialog Box.

Figure 6. The Parameter Characteristics Dialog

Box for Binary Strings.

81



i file [dit Control almm_cmnmWlndowe

fitness Scelln 0 _ i
I fitness Sharing F
] Selection F I
I Sampling k |
im..,LL..Jt, ,._lnolo Point i

I Mutation k MultIPoint i

None .J

i Set Probebnltu... J

Figure 12. The Crossover Menu Using the Binary
String Library.

File Edll Control m.umE, ml Windows

Fitness Scaling k
Fitness sharing )
Selection

Mutation
_PortlollU Matched I
Cucln I
Order I

Sol ProbshnltU... J

Figure 13. The Crossover Menu Using the

Permutation Library.

[ 6 File Edit Control

ammaai'mwm Windows

fitness Scaling --k_'----
Fitness Sharing k
Selection F I
Sampling F I
crossover k. I
_ ,1'PerMulntIon

.........
Sat ProbnOlllt_...

Figure 14. The Mutation Menu Using the Binary

String Library.

Figure 15. The Mutation Menu Using the
Permutation Library.

Q.UlP..U]. Various windows present information to the user as the genetic algorithms execute. These windows

are described briefly in the following sections.

The Statistics Window. The Statistics Window, shown in figure 16, displays the current

generation number along with numeric objective function measures of the best solution ever found and the best,

average, and worst members of the current population.

The Fitness Window. The Fitness Window, shown in figure 17, displays the fitness distribution of

the current population. Fitness values are normalized, using the best ever fitness value, to create fitness values
between 0.0 and 1.0. This interval is divided into 0.1 size bins and the percentage of the population in each bin

is presented as a histogram.

|r-i_ Statistics =========ii_

Generation 0

Best Ever 0

Best 0

Average 0

Worst 0

Fitness

0 Fitness 1

Figure 16. The Statistics Window. Figure 17. The Fitness Window.

Th90bjg¢tive Window. The Objective Window, shown in figure 18, displays the numeric
information from the Statistics Window but in historic form as a strip chart.

Th¢ User Window. The User Window, shown in figure 19, is controlled by the developer of the

fitness module. The Splicer program provides simple drawing commands that the developer can use to draw in
this window. The user is notified whenever a "best ever" solution has been found. One way this window can be

used is to graphically display information about this solution. For example, in the window shown, the best

83



|i_, Objective _[_l

3068

f(x)

o
oerera_ Number 130

Traveling Salesperson

Figure 18. The Objective Window. Figure 19. The User Window.

solution (so far) for a 25 city traveling salesperson
problem is drawn. The numeric value of this
solution would simultaneously appear in the
Statistics Window.

The Trace Window. The Trace

Window, shown in figure 20, presents the
algorithm used by the genetic algorithms and
highlights the current activity the genetic
algorithms are performing by filling the appropriate
box.

=r_mm Tra ce

Evaluate

[] Calculate Fitness
[] Scale Fitness
[] Share Fltness

ReproducQ
[] Select Parents
[] Sample Parents
[] Crossover
]'-I Mutation

Figure 20. The Trace Window.

'_. An early versioffof-the _cint0sh-b_Spiicer tool was released for beta testing in July, 1990.

i3ur_n-g the beta testing l_d0d-, theiool was ported to a Sun 3/80 and an X Window System User interface w-as
developed. Significant new functionality, derived from the literature and suggestions from beta test feedback,
and bug fixes were then incorporated into both versions. Documentation (user and reference manuals) is
currently being developed. Version 1.0 of the Splicer genetic algorithm tool (both Macintosh and X Windows)
will be released within the near future.

Fxlture Work. Future work for this project includes the following:
• Additional functionality (e.g., steady state GAs, fitness sharing, other crossover or mutation operators)
• Genetic algorithm research
• Application of GAs and the Splicer tool within specific domains (e.g., job shop scheduling)
• Augmentation of the Splicer tool to create an application-specific tool within a particular domain

REFERENCES

1. Holland, John H.: Adaptation in Natural and Artificial Systems. University of Michigan Press (Ann
Arbor), 1975.

2. Goldberg, David E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wessley
Publishing Company, Inc. (Reading), 1989.

3. Goldberg, David E.: Computer-aided Gas Pipeline Operation using Genetic Algorithms and Rule Learning.
Doctoral Dissertation, University of Michigan, 1983.

84



|I Objective __|

3068,

0
130

Oenera_on Nurnbor

Trauelln_l Salesperson

Figure 18. The Objective Window.

solution (so far) for a 25 city traveling salesperson

problem is drawn. The numeric value of this

solution would simultaneously appear in the
Statistics Window.

Th¢ Trace Window. The Trace

Window, shown in figure 20, presents the

algorithm used by the genetic algorithms and

highlights the current activity the genetic

algorithms are performing by filling the appropriate
box.

Figure 19. The User Window.

I= i /llll=D====_ Trace

Evaluate

[] Calculate Fitness

[] Scale Fitness

[] Share Fltness

ReProduce

[] Select Parents

[] Sample Parents

[] Crossover

[] Mutatlon

Figure 20. The Trace Window.

Status. An early version of the Macintosh-based Splicer tool was released for beta testing in July, 1990.

During the beta testing period, the tool was ported to a Sun 3/80 and an X Window System user interface was

developed. Significant new functionality, derived from the literature and suggestions from beta test feedback,

and bug fixes were then incorporated into both versions. Documentation (user and reference manuals) is

currently being developed. Version 1.0 of the Splicer genetic algorithm tool (both Macintosh and X Windows)
will be released within the near future.

Future Work. Future work for this project includes the following:

• Additional functionality (e.g., steady state GAs, fitness sharing, other crossover or mutation operators)

• Genetic algorithm research

• Application of GAs and the Splicer tool within specific domains (e.g., job shop scheduling)

• Augmentation of the Splicer tool to create an application-specific tool within a particular domain

REFERENCES

1. Holland, John H.: Adaptation in Natural and Artificial Systems. University of Michigan Press (Ann

Arbor), 1975.

2. Goldberg, David E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wessley

Publishing Company, Inc. (Reading), 1989.

3. Goldberg, David E.: Computer-aided Gas Pipeline Operation using Genetic Algorithms and Rule Learning.

Doctoral Dissertation, University of Michigan, 1983.

84



• File [dlt Control L_qu_m_,m Windows

Fnnass Scaling t' ]
Fitness Sharing k ISelection
Sampling ),

m .......... |.'Single Point
Mutation kJ Mu|li Pninl

i Sat Probability...

Figure 12. The Crossover Menu Using the Binary

String Library.

• File [dlt Control _.uma_ Wlndowl;

Fitness Scaling F
Fllnooc Sharing k
Selection I_
Sampling ),
Crossover k

L_-[nm ..... ,,,'Point
Norm

Set Prnbobllltw...

• File Edit Control WnumnTs, m Windows

Fitness Scaling k
Rtne$$ Shnrin 9 k
Selection )

Mutation F
_PnrllnlluMalched

Cuclo
Order
None

Set Probebllltw...

Figure 13. The Crossover Menu Using the
Permutation Library.

• File [dl! Control .,,nm_n_ Windows

rltnn¢¢ Scaling k
Fitness Shoring k
Selection k
Snmpllng k
Crossover k

E[.._i,.. gill .,'PerMutation
None

SaI ProbaomtM...

Figure 14. The Mutation Menu Using the Binary

String Library.
Figure 15. The Mutation Menu Using the

Permutation Library.

_llP_Ul. Various windows present information to the user as the genetic algorithms execute. These windows

are described briefly in the following sections.

The Statistics Window. The Statistics Window, shown in figure 16, displays the current

generation number along with numeric objective function measures of the best solution ever found and the best,
average, and worst members of the current population.

The Fitness Window. The Fitness Window, shown in figure 17, displays the fitness distribution of

the current population. Fitness values are normalized, using the best ever fitness value, to create fitness values

between 0,0 and 1.0. This interval is divided into 0.1 size bins and the percentage of the population in each bin
is presented as a histogram.

|[]_ Statistics m

Generation 0

Best Ever 0

Best 0

Average 0

Worst 0

Fitness

Figure 16. The Statistics Window. Figure 17. The Fitness Window.

The Objective Window. The Objective Window, shown in figure 18, displays the numeric

information from the Statistics Window but in historic form as a strip chart.

The User Window. The User Window, shown in figure 19, is controlled by the developer of the

fitness module. The Splicer program provides simple drawing commands that the developer can use to draw in
this window. The user is notified whenever a "best ever" solution has been found. One way this window can be

used is to graphically display information about this solution. For example, in the window shown, the best

83



4. Goldberg, David E.; and Samtani, M.P.: Engineering Optimization via Genetic Algorithms. Proceedings
of the Ninth Conference on Electronic Computation, 1986, p. 471-482.

5. Fitzpatrick, J.M.; Greffenstette, J.J., and Van Gucht, D.: Image registration by genetic search. Proceedings
of IEEE Southeast Conference, 1984, pp. 460-464.

6. Baffes, P.; and Wang, L.: Mobile Transporter Path Planning Using a Genetic Algorithm Approach.
Proceedings of SPIE's Cambridge Symposium on Advances in Intelligent Robotics Systems, Cambridge, MA,
1988.

85



N91-24051

INTEGRATEDVERTICALBLOCH LINE (VBL) MEMORY

R. R. Katti, J. C. Wu, and H. L. Stadler

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA 91109

ABSTRACT

Vertical Bloch Line (VBL) Memory is a recently conceived, integrated, solid-state, block-access, VLSI

memory which offers the potential of 1 Gbit/cm 2 areal storage density, data rates of hundreds of megabits

per second, and submillisecond average access times simultaneously at relatively low mass, volume, and

power values when compared to aitemative technologies. VBLs are micromagnetic structures within

magnetic domain walls which can be manipulated using magnetic fields from integrated conductors. The

presence or absence of VBL pairs are used to store binary information. At present, efforts are being
directed at developing a single-chip memory using 25 Mbit/cm 2 technology in magnetic garnet material which

integrates, at a single operating point, the writing, storage, reading, and amplification functions needed in a

memory. This paper describes the current design architecture, functional elements, and supercomputer
simulation results which are used to assist the design process.

INTRODUCTION

Vertical Bloch Line (VBL) Memory t" 2,3 is a solid-state, radiation-hard, nonvolatile, block access,

magnetic VLSI memory. Research and development efforts for this novel memory are being pursued in the

United States, Europe, and Japan. Table 1 shows the potential storage density that is achievable with VBL

memory. The densities are a function of stripe width and line feature width, which are defined respectively

by the magnetic garnet material and the lithographic process.

In a VBL memory, information is stored using VBL pairs in magnetic stripe domains in garnets. The

presence or absence of a Vertical Bloch Line pair in a bit-cell location defines a binary "l'and "0,"
respectively. Input to the chip is performed by converting currents into magnetic bubbles and then into VBL

pairs. Output sensing is performed by converting VBL pairs into magnetic bubbles and sensing magnetic

bubbles magnetoresistively.

PRESENT DEVICE DESIGN

Fabrication

The present design uses the magnet garnet, (BiYGdHoCa)3(FeGeSi)5Ol2, as the storage medium. The

thickness, stripe width, collapse field, saturation magnetization, and anisotropy field of the film is

approximately 2.4# m, 2.4# m, 230 Oe, 450 Oe, and 1800 Oe, respectively. The film is grown epitaxially on

a non-magnetic gadolinium-gallium-garnet (GGG) substrate. These films are transparent but also have a

large Faraday rotation, so that magnetic stripes, magnetic bubbles, and, under certain conditions, VBLs can
be observed magneto-optically with polarized light using the Faraday effect in a polarized light microscope.

The magnetic garnet has perpendicular magnetic anisotropy so that the magnetization lies perpendicular

to the film plane, with the bu_lk of the film magnetized in one direction, and the stripes magnetized in the
opposite direction. A magnetic domain wall is the boundary between the stripe's magnetization and the

magnetization of the rest of the film. A twist of magnetization in the domain wall in the plane of the film is

a VBL, and two such twists form a VBL pair. If the chirality, or sense of rotation, of the VBLs in the wall is

the same, the VBL pair is stable, with a size calculated to be much less than 1 # m. The VBL pair is bound

together energetically by VBL demagnetizing field energy and magnetic exchange energy.


